The set of all $\alpha  \in R$, for which $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ is a purely imaginary number, for all $z \in C$ satisfying $\left| z \right| = 1$ and ${\mathop{\rm Re}\nolimits} \,z \ne 1$,  is

  • [JEE MAIN 2018]
  • A

    $\left\{ 0 \right\}$

  • B

    an empty set

  • C

    $\left\{ {0,\frac{1}{4}, - \frac{1}{4}} \right\}$

  • D

    equal to $R$

Similar Questions

If $0 < amp{\rm{ (z)}} < \pi {\rm{,}}$then $amp(z)-amp ( - z) = $

For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is

For any two complex numbers ${z_1}$and${z_2}$ and any real numbers $a$ and $b$; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $

  • [IIT 1988]

$|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|$ is possible if

If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to

  • [JEE MAIN 2013]